
A Comparison of
Text and Shape Matching for

Retrieval of Online 3D Models

with statistical significance testing

Patrick Min

institute of information and computing sciences, utrecht university

technical report UU-CS-2004-26

www.cs.uu.nl

Abstract

Because of recent advances in graphics hard- and software, both the production and use of 3D models
are increasing at a rapid pace. As a result, a large number of 3D models have become available on the web,
and new research is being done on 3D model retrieval methods. Query and retrieval can be done solely
based on associated text, as in image retrieval, for example (e.g. Google Image Search [15] and [40, 51]).
Other research focuses on shape-based retrieval, using methods that measure shape similarity between 3D
models (e.g., [14]).

The goal of our work is to take current text- and shape-based matching methods, see which ones per-
form best, and compare those. We compared four text matching methods and four shape matching methods,
by running classification tests using a large database of 3D models downloaded from the web [50]. We also
investigated several simple methods to combine the scoring results of text and shape matching. Addition-
ally, this report uses statistical tests for significance testing of differences in precision/recall results.

We found that shape matching outperforms text matching in all our experiments. The main reason is
that publishers of online 3D models simply do not provide enough descriptive text of sufficient quality:
3D models generally appear in lists on web pages, annotated only with cryptic filenames or thumbnail
images. Of the available text sources of a 3D model, we found that the text inside the model file was the
most useful for classification. Also, adding synonyms and hypernyms (category names) of model filenames
using WordNet [31] improved classification results.

Combining the results of text and shape matching further improved performance. The results of this
work provide added incentive to continue research in shape-based retrieval methods for 3D models, as well
as retrieval based on other attributes.

Chapter 1

Introduction

There has been a recent surge of interest in methods for retrieval of 3D models from large databases.
Several 3D model search engines have become available within the last few years (e.g., [5, 30, 32, 55]),
and they cumulatively index tens of thousands of 3D polygonal surface models. Yet, still there have been
few research studies investigating which types of query and matching methods are most effective for 3D
data. Some 3D model search engines support only text queries [30], while others provide “content-based”
queries based on shape [14]. But how do shape-based and text-based retrieval methods compare?

To investigate this question, we measured classification performance of the currently best-performing
text-based and shape-based matching methods. We also evaluated several functions that combine text and
shape matching scores. For the text matching, a 3D model is represented by a text document, created
from several sources of text associated with the model, as well as synonyms and hypernyms (category
descriptors) of the 3D model filename (added using WordNet, a lexical database [31]). For the shape
matching, a 3D model is represented by a shape descriptor, computed from the polygons describing the
model’s surface.

All classification tests were done using the Princeton Shape Benchmark [50] (PSB) 3D model test
database. It contains 1814 3D models downloaded from the web, subdivided into a training set and a
test set, containing 907 models each, manually classified into 90 and 92 comparable classes respectively.
It is a subset of a larger database of about 33000 models downloaded from the web using an automatic
crawler [33]. Retrieval results were evaluated using precision/recall curves [58].

We found that shape-based matching outperforms text-based matching in all our experiments. The
main reason is that 3D models found on the Web are insufficiently annotated. They usually are presented
in lists, annotated with at most a single name, which is often misspelled or a repeat of the filename. Of the
available text sources, we found that the text inside the model file itself and the synonyms and hypernyms
of the filename were the most discriminating. Additionally, we found that when combining the results of
the shape and the text matching method, several combination functions produced a significant improvement
over shape alone.

Overall, our results show that the relatively simple solution of using only associated text for retrieval of
3D models is not as effective as using their shape.

The rest of this report is organized as follows. The next chapter discusses all issues relevant to evaluat-
ing the matching methods, namely the test database used, performance metrics, and statistical significance
testing. Text matching and our approach for maximizing text retrieval performance is described in Chapter
3. Chapter 4 discusses shape matching and shows the performance of several recent shape matching meth-
ods. Text and shape matching are compared in Chapter 5 and combined in Chapter 6. Conclusions and
suggestions for future work are in Chapter 7.

1

Chapter 2

Evaluation Method

2.1 Introduction
In this chapter, we describe the test database and the performance metrics that were used for evaluating the
various matching methods. We also discuss some options for statistical tests to evaluate the significance of
differences in performance.

2.2 Test Database
Retrieval performance was measured with respect to a “ground truth” test database: a database of 3D
models classified into categories. The goal in a retrieval experiment then becomes: given a query model
from a certain category, retrieve all models from that same category.

The test database we used is the Princeton Shape Benchmark (PSB) 3D model test database [50]. It
contains 1814 3D models downloaded from the web, subdivided into a training set and a test set, containing
907 models each, manually classified into 90 and 92 comparable classes respectively.

Next, we briefly describe how the PSB was constructed. Its initial source was a collection of about
44000 models acquired in three separate web crawls [33, 50]. After removal of duplicates, model files
with errors, etc., about 33000 models remained, which had to be manually classified. To avoid having to
manually identify models with a (nearly) identical shape, we clustered the models using a 3D shape similary
metric (by comparing Spherical Harmonics Descriptors, see Section 4.2) as a distance measure [22]. For
example, we found multiple copies of the same model at different URLs, multiple levels of detail for the
same object, and different colours/textures for models with the same geometry (e.g., 483 spheres, 261
cubes, 33 cylinders, etc.). This resulted in 15990 clusters. The model at the centroid of each cluster was
chosen as its representative. These representative models formed the database of models which had to be
manually classified.

An initial classification of this 15990 model database was done by an undergraduate student (David
Bengali), resulting in 384 classes. Classes such as abstract geometric shapes, data visualizations, and
molecule models were left out, because they contained either many unspecific and/or abstract models, or
were difficult to classify further without expert knowledge.

We then further refined the classification, resulting in a set of approximately 5000 models. From this
set we selected a subset of 1000 models, subdivided into 81 classes [32]. The classes were chosen such that
(1) they represented a wide variety of models, (2) no single class would become too large (e.g. larger than
10% of the database size), and (3) there was a wide range of class sizes. This dataset was later expanded
into the 1814 model Princeton Shape Benchmark.

2

2.3 Performance Metrics

2.3.1 Precision/Recall
Retrieval results are evaluated using precision/recall curves [58]. Here we briefly review how these are
computed.

Given a classified test database of 3D models, each model is submitted as a query and matched to all
models (including itself) using a matching method. The models are then ranked according to their matching
score.

The query model is a member of a certain class of size c. For each number of returned results k, and
a number of relevant results rel (i.e. models that are members of the same class) within these returned
results,

recall = rel/c

precision = rel/k

A perfect classification method would always return objects from the same class as the query object in the
top c results. In this case the precision would be 1.0 for each recall value, and the precision/recall plot a
horizontal line at y = precision = 1.0. In practice the goal is to achieve as high as possible precision
values. For a certain number of recall intervals (20 in our implementation) in the range [0, 1], precision
values are averaged over all models. The average over all models is called the micro-average. A macro-
average is computed by first computing the average of the models in each class, and then averaging these
class averages.

To gain some insight into what it means if average precision differs by, for example, 0.1, we examine
the following retrieval results. Consider a query from a class of size c = 10, and the first twenty retrieved
results. In the table below three different ranked result lists are given, where an “R” denotes a relevant
result (i.e. one from the same class as the query). The top row shows the result rank, the next three rows

rank →

test nr. ↓
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

I R R R R R R R R R R
II R R R R R R R R R R
III R R R R R R R R R R

show the positions of the 10 class members from three different retrieval tests. Row II is the same as row I,
but with the top eight results shifted up by one position. Note that changes at the top contribute relatively a
lot to the average precision: for example, the number two result (precision = 1/2 = 0.5) moves to the top
spot (precision = 1/1 = 1.0), resulting in an increase of (1.0 − 0.5)/10 = 0.05 in average precision. Row
III is the same as row I, but with the bottom seven results shifted up by three positions. Both these changes
result in an increase in average precision of about 0.1 when compared to the first row (the actual average
precision values are 0.486, 0.588, and 0.578, so the percentage improvements are 21% and 19%).

2.3.2 Discounted Cumulative Gain
An alternative metric is the Discounted Cumulative Gain (DCG) [21]. The DCG weighs correct results
near the top of the ranked list of results more than results lower in the list. The motivation behind this
metric is that the user is most likely to examine the top of the results list (as opposed to examining all
results which could be spread across 50 pages of 16 results each, for example).

A formal description (copied from [50]) is: the ranked results list R is converted to a list G, where
element Gi has value 1 if element Ri is in the correct class and value 0 otherwise. Discounted cumulative
gain DCGk (with k the number of results) is then defined as [21]:

DCGi =

{

G1, i = 1
DCGi−1 + Gi

log
2
(i) , otherwise

}

3

 0

 20

 40

 60

 80

 100

 120

 0 0.2 0.4 0.6 0.8 1

Text matching, TF/IDF log occur, micro-avg precision, PSB test set

 0

 20

 40

 60

 80

 100

 120

 0 0.2 0.4 0.6 0.8 1

Text matching, Kullback-Leibler, micro-avg precision, PSB test set

(a) (b)

 0

 20

 40

 60

 80

 100

 120

 0 0.2 0.4 0.6 0.8 1

Text matching, TF/IDF log occur, DCG, PSB test set

 0

 20

 40

 60

 80

 100

 120

 0 0.2 0.4 0.6 0.8 1

Text matching, Kullback-Leibler, DCG, PSB test set

(c) (d)

Figure 2.1: Example score distributions for two different metrics (micro average precision in (a) and (b), and DCG in
(c) and (d)) of two different text matching methods (TF/IDF in (a) and (c), Kullback-Leibler in (b) and (d))

This result is then divided by the maximum possible DCG (i.e., that would be achieved if the first c results
were in the correct class, where c is the size of the class) to give the final score:

DCG =
DCGk

1 +
∑c

j=2
1

log
2
(j)

DCG seems a more attractive measure, especially in cases when a lot of relevant results from a large
class appear both near the top and far down the results list. Even though the user is happy (because many
good results show up on the first page), the average precision is pulled down a lot by the lower-ranked
results.

2.4 Statistical Significance of Differences in Precision/Recall Graphs
The distribution of performance scores (e.g., average precision, DCG, etc.) depends on which 3D models
are in our test database, how they are classified, and (obviously) the used matching method. For example,
Figure 2.1 shows sample distributions of two different metrics (micro average precision and DCG) of two
different text matching methods (“TF/IDF log occur” and “Kullback-Leibler”, see Chapter 3 for details),
tested using the PSB test set.

If the distribution of the differences is approximately normal, then we can use the well-known Student’s
paired t-test for significance testing. To establish this, we first have to run a normality test on the distribution
of differences. Figure 2.2 shows the distribution of differences of the score samples in Figure 2.1.

If the normality test says the distribution of differences is not “sufficiently normal”, then we have to use
a non-parametric significance test, for example Randomization (on means of matched pairs) or Wilcoxon’s

4

 0

 50

 100

 150

 200

 250

 300

-0.4 -0.2 0 0.2 0.4

Text matching, TF/IDF log occur - Kullback-Leibler, micro-avg precision, PSB test set

 0

 50

 100

 150

 200

 250

 300

-0.4 -0.2 0 0.2 0.4

Text matching, TF/IDF log occur - Kullback-Leibler, DCG, PSB test set

(a) (b)

Figure 2.2: The distribution of differences of the micro average precision scores of (a) TF/IDF log occur minus
Kullback-Leibler, and (b) the same distribution for the DCG scores

Sum of Signed Ranks test (more details about these tests appear below). This procedure was also suggested
by Hull [19] (he uses Wilcoxon’s test and a sign test as the non-parametric alternatives). Strictly speaking
this whole procedure (i.e. testing for normality and then applying another test depending on the outcome)
becomes a new statistical test. Therefore we can no longer claim that a result is significant at the 5% level,
for example, even if in the last step the test we picked said so. Also, in practice the Student’s t-test can be
used even if the data being tested is not normally distributed (except when distributions are heavily skewed
or contain many outliers). As will be seen below, this is supported by our results.

First, we will describe each step of the suggested procedure in more detail. Next, the three significance
tests are compared in Section 2.4.5. Note that all tests were 2-tailed, in other words, no assumptions were
made beforehand about which set of scores was higher than the other.

2.4.1 Test for Normality
The normality test we use was first described in [11]. This test computes the correlation coefficient of
the normal probability plot of our data [4]. In a normal probability plot, the data is plotted against a
theoretical normal distribution such that if it is approximately normal, then the plotted points should form
an approximate straight line. The “straightness” of this line can be quantified by its correlation coefficient
(ranging between 0.0 and 1.0, 1.0 corresponding to a perfectly straight line). If the correlation coefficient
is less than a certain cutoff value (determined by the chosen significance limit (e.g. 5%) and the number
of degrees of freedom (= N − 1, with N the number of data points) [11, 25]), then we reject the null
hypothesis that the data is normally distributed.

To compute the normal probability plot, we use a program called plotmtv [39]. This program was
slightly modified to store the (x, y) values of the plot in a file, from which the correlation coefficient could
be computed. Figure 2.3 shows the normal probability plots produced by plotmtv for the difference
distributions shown in Figure 2.2.

The correlation coefficients of these two plots are 0.9013 and 0.9278 respectively. From the cutoff
values in [25] we find that both are significant at the 0.01 level, so both distributions are not normally
distributed.

2.4.2 Student’s paired t-test
If the result of the normality test is that the data is “sufficiently” normally distributed, then we can use
the well-known Student’s paired t-test to test the significance of the differences. From MathWorld [60]:
“Given two paired sets of n measured values, the paired t-test determines whether they differ from each
other in a significant way under the assumptions that the paired differences are independent and identically
normally distributed”. We refer the interested reader to [60] and the references cited there.

5

−0.3799 0 0.7635
0.01

0.1

1

10

20

30
40
50
60
70

80

90

99

99.9

99.99

Normal N(0,1) Order Statistic Medians

O
rd

er
ed

 R
es

po
ns

e

−0.3799 0 0.7635
0.01

0.1

1

10

20

30
40
50
60
70

80

90

99

99.9

99.99

−0.1 0 0.1 0.2 0.3 0.4 0.5
0.01

0.1

1

10

20

30
40
50
60
70

80

90

99

99.9

99.99

Normal N(0,1) Order Statistic Medians

O
rd

er
ed

 R
es

po
ns

e

−0.1 0 0.1 0.2 0.3 0.4 0.5
0.01

0.1

1

10

20

30
40
50
60
70

80

90

99

99.9

99.99

(a)
(b)

Figure 2.3: The normal probability plots of the distributions of differences shown in Figure 2.2, produced using the
plotmtv program [39]

2.4.3 Randomization Tests
A non-parametric test (i.e. a test with no assumptions about the underlying distribution of the data) we can
use is the Randomization test, first introduced by Fisher [13]. In our case we use the Randomization test on
means of matched pairs, which works as follows: first we compute a statistic t = tobj of the differences of
all paired scores. Then, using the null hypothesis that the differences are there by accident, implying that
for each paired result the difference could equally likely have been positive as negative, we flip the sign
of a random subset of all differences and recompute the statistic t = tnew. We then check if tnew > tobj .
This process is repeated a large number of times (say 105 times) and we tally the number of times that
tnew > tobj . If the null hypothesis were true, this should happen a significant number of times (in more
than 5% of all cases), implying no significant difference between the input distribution pair.

In our implementation, t is the normalized mean difference (the mean difference divided by the standard
error, where the standard error equals the standard deviation divided by the square root of the number
of scores). Because we are doing a two-tailed test, we take the absolute value of the normalized mean
difference.

For the Randomization test, N times a random number of differences is flipped, and the t statistic is
recomputed. Some C code for this step is given below.

float compute_mean_difference()
{
float sum_diff = 0;
for(int i=0; i < nr_scores; i++) {

float diff = data[0][i] - data[1][i];
float abs_diff = fabs(diff);

float random = (float) rand() / RAND_MAX;
if (random < 0.5) diff = -abs_diff;

6

else diff = abs_diff;
sum_diff += diff;

}
float mean_diff = sum_diff / nr_participating;
return mean_diff;

}

The main loop then is (with NR COMBINATIONS equal to, say, 105, and std err (the standard error)
and t obj already computed):

int nr_larger = 0;
for(int i=0; i < NR_COMBINATIONS; i++) {

float mean_diff = compute_mean_difference();
mean_diff /= std_err;
mean_diff = fabs(mean_diff);
if (mean_diff >= t_obj) nr_larger++;

}
float P = (float) nr_larger / NR_COMBINATIONS;
if (P > 0.05) printf("No significant difference (at 0.05)\n");

2.4.4 Wilcoxon’s Sum of Signed Ranks Test
Another non-parametric significance test is the Wilcoxon Sum of Signed Ranks Test [28, 61]. Its signifi-
cance value is computed as follows. Given two sets of scores for N 3D models, then:

1. for each, compute the absolute difference in score, and remember the sign of the difference

2. discard differences that are less than some ε value

3. sort the resulting differences

4. assign an average rank value to models with an equal difference (e.g., 2 models both have an absolute
difference of 0.31 at rank 4 and 5: their new rank will be (4 + 5)/2 = 4.5

5. change the sign of each rank according to the original sign of the difference

6. sum the resulting ranks = W

For high N (>= 10) we can approximate the distribution of the resulting sum W with a normal distribution.
It can be shown that the standard deviation is

σ =

√

N(N + 1)(2N + 1)

6

From σ and W we can compute the probability that the difference in ranks was caused by chance, assuming
a null hypothesis of equal underlying processes.

Step 2 in the above algorithm is important: it determines how many of our sample values are discarded.
If, for example, we consider precision values that are ε = 0.1 apart to be essentially equal, it could be the
case that 40% of all score pairs are discarded. Even if then the statistical significance test says the overall
difference is significant, we can only conclude that this is the case for the 60% that participated in the test.

Clearly the probability value (P value) depends a lot on the chosen value of ε. To examine this de-
pendency more closely, we can plot the value of P depending on ε. Figure 2.4 shows an example of such
a plot. The solid line shows P , the histogram shows the number of participating scores depending on ε
(from this we can see that the P values for larger ε (e.g. > 0.2) do not carry much information about the
whole population anymore). This plot shows that for all subsets of scores (ranging from the pairs with
small differences to those with large differences) their difference is insignificant (because the P graph is
above 0.05 everywhere).

7

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

GEDT vs SHD, Wilcoxon Sum of Signed Ranks Test

P(2 tailed)
smaller scores

significance limit (0.05)

Figure 2.4: This graph shows both the P value and the number of scores participating in Wilcoxon’s test depending on
ε. The horizontal line marks the significance limit of P = 0.05 (so in this graph all comparisons show an insignificant
difference)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

Kullback-Leibler vs K-nearest neighbours, Wilcoxon Sum of Signed Ranks Test

P(2 tailed)
smaller scores

significance limit (0.05)

Figure 2.5: The same graphs as in Figure 2.4, comparing two text matching methods. Note that the choice of ε greatly
influences the significance result: e.g. 0.05 will show an insignificant difference, 0.1 will show a significant one

8

Figure 2.5 shows the same plot, comparing the scores of two text matching methods. Note that the
choice of ε greatly influences the significance result: e.g. 0.05 will show an insignificant difference, 0.1
will show a significant one. This means that we cannot just pick an ε value and trust the result of Wilcoxon’s
test.

For these reasons (the inability to compare significance tests when discarding scores, and the arbitrari-
ness of picking an ε value) we recommend to leave out step 2 altogether (in other words, set ε to 0).

Weighted Cumulative Probability Pwc

To avoid having to look at such a graph for every significance test, we propose to first compute the following
metric: the weighted cumulative probability Pwc, computed as follows (with k the number of ε samples
we are taking, nε the number of scores participating given ε, P (ε) the Wilcoxon P value for the subset of
scores determined by ε, and N the total number of scores):

Pwc =

k
∑

i=1

nε

N
· P (ε) ∧ ε = i/k

In words, this is an approximation of the area under a graph defined as the P graph weighted by the
percentage of participating scores at each ε. It is an indicator of the “strength” of the significance: a low
Pwc probably indicates a signifcant difference (i.e. P < 0.05) across the board. If Pwc is high (e.g. > 0.2)
then we may decide to look at the actual graph.

For example, the graph in Figure 2.6 has a Pwc value of 0.23. From an ε value of 0.1 we would have
found the scores to be significantly different (the Randomization and Student’s t-test both say they are
significantly different). The graph shows that this is indeed the case, except for the about 15% highest
scores.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

Wilcoxon Sum of Signed Ranks Test

P(2 tailed)
smaller scores
signif. limit (0.05)

Figure 2.6: The Pwc value for this graph is 0.23 leading us to decide to examine the actual graph, which shows that
the scores are significantly different, except for the about 15% best scores

To investigate the correlation between the Pwc value and the outcome of the Randomization test, we
produced a histogram of the Pwc values of pairs of score sets for which the Randomization test said their
difference was significant, and compared it to a histogram of Pwc values of insignificant difference: see
Figure 2.7. The histogram suggests that Pwc values below about 0.3 imply a significant difference, and

9

values above 2.0 an insignificant difference. For Pwc values inside this interval the actual graph may need
to be examined.

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6

nu
m

be
r o

f s
ig

ni
fic

an
ce

 te
st

s

P_wc value

significant difference
unsignificant difference

Figure 2.7: Pwc values corresponding to significant and insignificant differences (using the Randomization test), for
a total of 112 tests (100 significant, 12 insignificant differences)

QQ plot

Of course the graphs as produced in Figure 2.6 are of our own design, and not used in the statistics literature.
For completeness, we briefly decsribe a more common way to compare two distributions: the quantile-
quantile plot, or QQ plot. In our case, comparing two equally sized distributions, the QQ plot compares
two ordered sets of values. From the way the plot deviates from the line x = y one can make some
qualitative statements about the difference between the distributions. For example, Figure 2.8 shows the
QQ plot comparing the same two distributions as in Figure 2.6. This shows that the x values (category name
queries) are smaller then the y values (representative document queries) until about 0.12, after which the
opposite is true. Note that here actual average precision values per query are being plotted, and that it is not
possible to derive the distribution of differences from this plot, because the query to query correspondence
is lost.

2.4.5 Comparing the Wilcoxon Signed-Rank Sum test, the Randomization test,
and the Paired t-test

Each time we had to apply a statistical test, we used all three tests, to see if they produce consistent
(qualitative) results. Out of the 112 pairs of sets of scores tested for this report, each time all three tests
agreed, even though normality tests showed we could not use the Student’s t-test in almost all cases. This
suggests that for our type of data the Student’s t-test works just as well as the non-parametric tests.

Also note that with any significance testing method a distribution which is consistently higher than
another by a small margin will result in a very small P value, showing it is significantly higher. So the
significance does not lie in the size of the margin, but in its consistence. Attaching an importance to a
difference of a certain size is another matter (e.g. see Section 2.3.1).

10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

TF
/ID

F
lo

g
oc

cu
r,

re
pr

es
en

ta
tiv

e
do

cu
m

en
t q

ue
rie

s

TF/IDF log occur, category names queries

QQ plot
x = y

Figure 2.8: A QQ plot comparing the same two distributions as in Figure 2.6

2.4.6 Further Reading
For an extensive discussion of potential problems with precision/recall graps and some alternatives, see
Huijsmans and Sebe [18]. The papers by Knapp [23] and Salzberg [45] contain examples and discussion
of things to watch out for when selecting and using statistical tests. Statistical tests with cross-validation
are evaluated in a paper by Dietterich [10]. The procedure we follow is equivalent to the one suggested by
Hull [19]. For a gentle introduction to the field of inferential statistics, see the online book by Lowry [28].

11

Chapter 3

Text Matching

In this chapter, we first review related work on retrieval of non-textual data using associated text. Note that
we do not discuss text retrieval itself. We refer the interested reader to [2, 44, 49]. We then describe the
sources of text found with 3D models crawled from the web and investigate how this text can be used to
compute a similarity measure for the associated 3D models.

3.1 Related Work
There has been relatively little previous research on the problem of retrieving non-textual data using asso-
ciated text. The web is an example of a large database for which such methods can be useful: (1) it contains
many non-textual objects (e.g., images, sound files, applets) and (2) these objects are likely to be described
on web pages using text. Examples of web search engines that take advantage of associated text are Google
Image Search [15] (for images), FindSounds [12] (for sound files), and MeshNose [30] (for 3D models).

Probably the largest site for searching images using text keywords is Google’s image search. Unfor-
tunately there are no publications available about the method they use. A related FAQ page suggests that
heuristics are used to determine potentially relevant text related to an image, for example, the image file-
name, link text, and web page title. Each source is probably assigned a different weight, depending on its
importance, similar to how the main Google search site assigns weights to text terms depending on whether
they are in the title, headers, and so on.

Sable and Hatzivassiloglou investigated the effectiveness of using associated text for classifying images
from online news articles as indoor or outdoor [42]. They found that limiting the associated text to just the
first sentence of the image caption produced the best results. In other work, Sable et al. use Natural Lan-
guage Processing (e.g., identifying subjects and verbs) to improve classification performance of captioned
images into four classes [41]. Our problem is slightly harder since our source text is less well-defined (i.e.,
there is not an obvious “caption”), and the number of classes is much higher.

Even though promising results have been achieved in text-based image retrieval, it is not obvious if text
matching will outperform shape matching for 3D model retrieval: 3D shape matching is in some respects
easier than image matching: 3D models are often already segmented from their background and do not
contain shadows, occlusions, projections, etc. To our knowledge, there has never been a study investigating
the effectiveness of text indexing for 3D models.

3.2 Text Sources
In our study, we focus on the common “bag of words” approach for text matching: all text that is deemed
relevant to a particular 3D model is collected in a “representative document,” which is then processed and
indexed for later matching. This document is created using several potentially relevant text sources. Be-
cause we are indexing 3D model files linked from a web page, we are able to extract text from both the
model file itself as well as the web page (note that because we convert all models to the VRML 2.0 format,

12

we only refer to text sources of this format). The following list describes the text sources we can use:

From the model file:

1. model filename: The filename usually is the name of the object type. The extension determines the
filetype. For example, alsation.wrl could be the filename of a VRML file of an Alsation dog

2. model filename without digits: From the filename we create a second text source by replacing all
digits with spaces. Very often filenames contain sequence numbers (for example, chair2.wrl)
that are useless for text keyword matching (though not always, as in, for example, f16.wrl)

3. model file contents: A 3D model file often contains labels, metadata, filenames of included files, and
comments. In VRML, it is possible to assign a label to a scenegraph node (a part of the model) and
then re-use that node elsewhere in the file. For example, in a model of a chair, a leg can be defined
once, assigned the identifier LEG, and then re-used three times to create the remaining legs. As such,
these identifiers typically describe names of parts of the model. To describe metadata, a VRML 2.0
file may contain a WorldInfo node, which is used to store additional information about the model,
such as a detailed description, the author name, etc. Filenames of included files can be names of
other model files, textures, or user-defined nodes. Included model files are also parsed for relevant
text. Finally, a model file may contain descriptive comments. The model file comments were left out
from our experiments because we found that many files contain commented-out geometry, which,
when included, would add many irrelevant keywords

From the web page:

4. link text: This is the descriptive text of the hyperlink to the model file, i.e., the text between the
<a> and HTML tags. For example: a VRML model of a
Boeing 747

5. URL path: These are the directory names of the full URL to the model file. If multiple models
are organized in a directory structure, the directory names could be category names helpful for clas-
sification. For example, as in the URL http://3d.com/objects/chairs/chair4.wrl (which
would yield the words objects and chairs)

6. web page context (text near the link): We define the context to be all plain text after the
tag until the next <a href> tag (or until the next HTML tag if there is none). This text could for
example read “1992 Boeing 747-400 passenger plane, 210K, created by John Doe”. Context found
before the link text was found to be mostly irrelevant

7. web page title: The title of the web page containing the link to the 3D model. It often describes the
category of models found on the page, for example, “Models of Airplanes”

Additional text source:

8. Wordnet synonyms and hypernyms: We create an additional eighth text source by adding syn-
onyms and hypernyms (category descriptors) of the filename using WordNet, a lexical database [31]
(if no synonyms or hypernyms can be found for the filename, the link text is tried instead). In re-
lated work, Rodriguez et al. use WordNet synonyms [9], and Scott and Matwin use synonyms and
hypernyms [48] to improve classification performance. Recently, Benitez and Chang showed how
WordNet can be used to disambiguate text in captions for content-based image retrieval [3]. Adding
synonyms and hypernyms enables queries like “vehicle” to return objects like trucks and cars, or
“television” to return a TV. WordNet returns synonyms and hypernyms in usage frequency order, so
we can limit the synonyms and hypernyms used to only the most common ones. Currently we use the
first three synonyms and the first hypernym (all combinations of 0-5 synonyms and 0-5 hypernyms
were tested)

13

3.2.1 Text Processing
Following common practices from text retrieval, all collected text goes through a few processing steps.
Here we illustrate these steps in detail by describing for an example model what text is used and how
this text is processed. The model is of the Parthenon, and was found on a website called “The VRML
Shrine” (http://www.geocities.com/BourbonStreet/1855/shrine.html): see Figure 3.1 for a
screenshot of this website.

For some of the processing steps (stop word removal and stemming) we use a tool called rainbow,
a program of the Bow toolkit, a freely available C library for statistical text analysis [29]. Before passing
text to rainbow, each word is converted to lowercase, and words of length 1 are removed.

Figure 3.1: An example website containing 3D models. The text processing steps are illustrated using the Parthenon
model on this site

Retrieved Text

From the model file:

1. model filename: parthenon.wrl

2. model filename without digits: parthenon.wrl

3. model file contents: WorldInfo node, with the following text in the info field: Author:
Mr. Phillip, Company: phi, LastSaveBy: Mr. Phillip, EditingTime:
28837. Additionally, many nodes have an identifier assigned to them (by using DEF): angel
band bint (23 times, with sequence numbers) bmid (6) ceiling wall chsl
(7) cube (2) doric (46) dress floor (5) hair halo int (4) label (28)
mid (6) object0 roofa roofa2 roofb root skin tie torch wings

From the web page:
The part of the web page source relevant to our example model is:

<td VALIGN="MIDDLE"><!--mstheme-->

The Parthenon.
By: Ictinus & Callicrates, 432 B.C.
<!--mstheme--></td>

4. link text: parthenon

5. URL path: bourbonstreet 1855

14

6. web page context (text near the link): by ictinus callicrates 432 b c

7. web page title: the vrml shrine

Additional text source:

8. Wordnet synonyms and hypernyms: parthenon temple
These words are derived from the output of wn parthenon -synsn:

Synonyms/Hypernyms (Ordered by Estimated Frequency) of noun parthenon

1 sense of parthenon

Sense 1
Parthenon

=> temple

The representative document now contains the following text:
filename: parthenon wrl
filename without digits: parthenon wrl
extension: wrl
path: bourbonstreet 1855
title: the vrml shrine
link text: parthenon
context: by ictinus callicrates xfourxxthreexxtwox the
modelfile: author mr phillip company phi lastsaveby editingtime 28837 doric
object chsl label bint int bmid roofb roofa ceiling wall cube mid floor
angel root band halo torch tie wings hair skin dress
synonyms: parthenon temple

Stop Word Removal

Next, stop words are removed. These are common words that do not carry much discriminating informa-
tion, such as “and,” “which,” and “my”. We use the SMART system’s stop list of 524 stop words [43], as
well as stop words specific to our domain. The domain-specific stopwords we use are:
img src border jpg gif www com http edu png rgb rgba bw tga kb mb gb
file html copyright shape gz gzip gzipped texcoord coord faces entity
noname bmp object continue download example static surface spline
faceset splin axis geometry defaultcamera gravity vp netscape java
browser mat byte bytes url defmat ctrl alt

Additionally, all VRML node and field names are removed: they frequently occur in user-defined
node names, as in DEF Transform12 Transform { ..., for example. This includes node and
field names from VRML 1.0, because user-defined identifiers are preserved by the VRML 1.0 to 2.0 con-
verter (we used vrml1ToVrml2, running under Irix). A few node names are not removed, for example
Sphere, Camera, Switch, Spotlight, etc., because these could also be object identifiers.

As the list of common stop words we initially used the “DVL/Verity stop word list” [26] (containing
457 stop words). The rainbow program by default removes the 524 stop words of the SMART retrieval
system [43]. Currently both lists are applied, because the DVL/Verity list contains a few words that are not
in the SMART list. For our example, this results in the removal of the words the by the author mr
(the last two are present in the DVL/Verity list, but not in the SMART list).

Stemming

Finally, the resulting text is stemmed (normalized by removing inflectional changes, for example “wheels”
is changed to “wheel”), using the Porter stemming algorithm [38]. This step is also done automatically by

15

the rainbow program.
For our example, the following words are changed: ictinus→ ictinu, callicrates→ callicr,

company→ compani, lastsaveby→ lastsavebi, editingtime→ editingtim, ceiling
→ ceil, wings→ wing, temple→ templ.

Erratum: from a recently (June 30, 2004) discovered bug in the rainbow source we found that
stemming never takes place, even when the commandline parameter --use-stemming is specified.
After fixing this bug we found that with stemming average precision (of the best performing matching
method, see Section 3.3) is lower by about 6%. As a consequence, all results in this technical report, and
in [32] and [34], are for unstemmed text (even though in these references it says the text is stemmed).
Note that the conclusions from the results in [32, 34] remain unchanged because the best performing text
matching method did not change.

3.3 Text Matching Methods Performance Evaluation
Given a representative text document for each 3D model, we can define a textual similarity score for every
pair of 3D models as the similarity of their representative text documents. To compute this score, we use a
variety of text matching methods provided by rainbow, a program of the Bow toolkit, a freely available C
library for statistical text analysis [29]. The tested methods were: three variations of TF/IDF [44], Kullback
Leibler [24], K-nearest neighbours, and Naive Bayes [35].

In our tests, each 3D model’s text document is assigned its own class (as opposed to putting, for exam-
ple, all text documents of the “helicopter” class in a single class) because our target application is retrieval,
not classification. In other words, the results returned by rainbow should be text documents of individual
models, not class names.

Figure 3.2 shows the precision/recall results obtained when the representative text document for each
3D model in the test set of the Princeton Shape Benchmark was matched against the representative text doc-
uments of all the other 3D models. The matches were ranked according to their text similarity scores, and
precision-recall values were computed with respect to the base classification provided with the benchmark.
From this graph, we see that the “TF/IDF log occur” method produces the highest scores for our dataset.
Before we select this method as our “reference” text matching method, we have to test the significance of
the score differences.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

pr
ec

is
io

n

recall

TF/IDF log occur
TF/IDF log words

TF/IDF words
Kullback-Leibler

K-nearest neighbors
Naive Bayes

random

Figure 3.2: Average precision/recall for seven different text matching methods, and random retrieval

16

3.3.1 Significance Testing of Micro Average Precision
Following the procedure described in Section 2.4, we first test the distribution of all sets of differences of
all pairs of scores for normality. From these tests we found that all sets of 907 differences are not normally
distributed, so we cannot use the Student’s t-test for these.

Randomization tests on the results of all
(

7
2

)

combinations of two matching methods showed that all
differences are significant, except Kullback-Leibler vs. K-nearest neighbours.

Next, we computed Pwc for all combinations (see Section 2.4.4). All Pwc values were below 0.09,
except for Kullback-Leibler vs. K-nearest neighbours it was 0.34. The graph with the Wilcoxon P value
depending on ε for these two methods was shown in Figure 2.5. From it we get a more detailed picture,
and see that large subsets of the sets of paired scores do not differ significantly.

3.3.2 Other Performance Metrics: Macro Average Precision, DCG
Macro Average Precision

Other performance metrics show the same qualitative behavior: for example, Figure 3.3 shows the macro-
averaged precision/recall plots for the same text matching methods, which are in the same order as the
micro-averaged plots (in Figure 3.2).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

pr
ec

is
io

n

recall

TF/IDF log occur
TF/IDF log words

TF/IDF words
Kullback-Leibler

K-nearest neighbors
Naive Bayes

random

Figure 3.3: Macro-averaged precision/recall for the same methods as in Figure 3.2

Significance testing (both the Randomization and Student’s t-test, normality testing showed only the
distribution of differences between “Naive Bayes” and “TF/IDF log occur” to be approximately normally
distributed though) showed that all differences in class averages were significant. Pwc values were all
below 0.03.

Discounted Cumulative Gain

Table 3.1 shows the Discounted Cumulative Gain (DCG [21], see Section 2.3.2) for the same set of meth-
ods. Again following our significance testing procedure (outlined in Section 2.4), we found that (1) all
distributions of differences of DCG scores are not normal, (2) both the Student’s t-test and the Random-
ization test showed all differences to be significant, and (3) the Pwc value for all combinations were below
0.03. So, in short, all differences are statistically significant.

17

method DCG
TF/IDF log occur 0.635
TF/IDF log words 0.631

TF/IDF words 0.613
Kullback-Leibler 0.580

K-nearest neighbours 0.565
Naive Bayes 0.539

random 0.272

Table 3.1: Average Discounted Cumulative Gain (DCG) [21] for the same methods as in Figure 3.2

3.3.3 The Best Method: TF/IDF
We can conclude that the TF/IDF-based methods perform the best on our data. We now briefly describe
this method, for more details see [44].

The TF/IDF method assigns a vector of term weights to each document. A term’s weight is based on its
frequency in the document (Term Frequency (TF), higher is better), and its frequency over all documents
(Inverse Document Frequency (IDF), lower is better, in other words, terms that do not appear in many other
documents are more discriminating). More precisely, the weight is set to tf log(N/df), where tf is the term
frequency in a document, N is the number of documents, and df is the term frequency over all documents1.
For the “TF/IDF log occur” method, the document frequency is the number of documents in which a term
occurs at least once. For the “TF/IDF log words” method, it is the total number of times a term occurs in all
documents. Classes are represented by the sum of the vectors of their individual documents. The similarity
score between two vectors is simply the cosine of the angle between them.

3.3.4 Other Methods
Other methods supported by the rainbow program were also tested but most failed to run to a finish.
In particular, the methods “active” (Active Learning), “em” (Expectation Maximization), and “maxent”
(Maximum Entropy) generated an assertion failure when creating the text index. The method “prind”
(Probabilistic Indexing) generated an assertion failure for each query. We were able to run the method
“SVM” (Support Vector Machines). However, it took on average about 180 times longer to process a query
(when compared to “TF/IDF log occur”, 3 seconds instead of 1/60th of a second on a 2.6 GHz Pentium IV)
and the resulting average precision was 36% lower (but note that we did not experiment with the various
parameter settings of the SVM method).

3.3.5 Parameter Settings
For most methods implemented in the rainbow program it is possible to adjust several parameters. We
experimented with different parameters settings for the methods TF/IDF log occur, Naive Bayes, and K-
nearest Neighbours, trying to maximize average precision for the training set. The settings were then
evaluated using the test set.

Three different parameters are available for pruning words from the representative documents:
--prune-vocab-by-infogain
only keep the top N words with the highest information gain (also called average mutual information [7]),
--prune-vocab-by-doc-count
remove words that occur in <= N documents, and
--prune-vocab-by-occur-count
remove words that occur <= N times. For the last two parameters the documentation states < N as the
condition, but the rainbow implementation uses <= N .

1In the rainbow implementation, the first term is log(tf + 1) instead of tf (we ran tests to confirm that this extra log does not
affect the results).

18

TF/IDF log occur

All three pruning strategies only worsen results for the TF/IDF log occur method. This may be explained
by the fact that the presence of certain words, no matter how few other words they match, can only improve
results, given that our database is relatively small: the chance that words generate incorrect “inter-class”
matches is small.

Naive Bayes

The results for Naive Bayes were similar, except for --prune-vocab-by-occur-count=2, which
produced an increase in average precision of about 5%.

Other parameters are specific to the Naive Bayes method:
-naivebayes-normalize-log
improves average precision by about 11% and the average DCG by about 8%
--smoothing-method
sets the method for smoothing word probabilities to avoid zeroes. The default method (“laplace”) produced
the best results
--uniform-class-priors
this makes no difference in the results, since in our case the class priors are all equal (1/907)
-event-model=[word|document|document-then-word]
the default model (word) produced the best results
Combining the two parameter settings that resulted in a performance increase did not improve performance
any further (--naivebayes-normalize-log and --prune-vocab-by-occur-count=2).

K-nearest Neighbours

The K-nearest neighbours method also has a few method-specific parameters that can be set:
-knn-k=k: sets the number of nearest neighbours to use. The default value is 30. Settings in the range
[20, 100] yield similar results. Note that these are just the k best-scoring results that are returned. Depend-
ing on the class size distribution (of our classification), at some point k becomes large enough to include
all relevant results. Making k even larger does not help anymore after that. By making k smaller we lose
valid results
--knn-weighting=<xxx>.<xxx>: sets the term weighting options for the model and the query re-
spectively. The first character sets the TF (term frequency) weighting, to one of the set {n, b, m, a, l},
meaning {none, binary, max-norm, aug-norm, log}, and corresponding to the value {f, 1, f / (max f in
doc), 0.5 + 0.5 · (f / (max f in doc)), 1.0 + ln f} (with f the actual term frequency). The second character
sets the IDF (inverse document frequency), and is one of {n, t}, i.e. {none, tfidf = ln(total docs / docs
containing term)}. The third character specifies if normalization is used, is one of {n, c}, equalling {none,
1 /

√

∑

(tf · idf)2} (summing over all terms)
After testing all possible combinations on the training set, we found the following:

• the TF weighting can be one of lamn, but not b, which worsens results

• the IDF weighting should be enabled

• the score normalization does not affect results

Evaluating using the test set with --knn-weighting=ntn.ntn results in a 1.5% improvement in
average precision over the TF/IDF log occur method. Significance testing showed the following: the set of
differences with TF/IDF log occur was not normally distributed, so the Student’s t-test could not be used
(it showed a significant difference at the 0.1 level, so not at the 0.05 level). A randomization test said it was
insignificant, but barely (the P value was 5.6%). The Pwc value is 0.68, and the graph shows the difference
is significant only for the middle 30% of scores. Randomization tests on the macro averages showed the
difference between this method and the TF/IDF log methods to be highly insignificant (P values were 73%
and 50%). Overall, we conclude that this improvement is statistically insignificant.

19

source percentage in top 50
model file 100

synonyms and hypernyms 100
link 62

filename without digits 58
filename 58

path 56
page title 54

page context 50

Table 3.2: Percentage of all occurrences of each text source appearing in the best 50 combinations

3.3.6 Text Source Combinations
To determine the most useful combinations of text sources, we ran a classification test using each combina-
tion of n out of the eight text sources for the representative text document, with n ∈ {1, ..., 8} (so the total
number of combinations tested was

∑8
n=1

(

8
n

)

= 255). The text matching method used was “TF/IDF log
occur”. The performance of each combination was measured as the average precision over twenty recall
values.

From these tests, we found that adding as many text sources as possible improves overall performance,
in general. This may be explained by our observation that the addition of keywords helps classification
performance if the keywords are relevant, but does not hurt performance if they are irrelevant, since they
do not match many other models. We expect that as the database size increases, this property will no longer
hold because irrelevant keywords would generate cross-class matches.

Looking more closely at how often each source occurs in the best combinations, we counted the number
of times each source appears in the top 50 combinations (i.e., the 50 combinations out of 255 with the
highest average precision). The results are shown as percentages in table 3.2. We see that the identifiers
found inside the 3D model files themselves provided the most information for classification. The WordNet
synonyms and hypernyms also turned out to be very useful, despite the fact that for 279 models (31%) no
synonym or hypernym was found (model names for which WordNet did not return a synonym or hypernym
included names (e.g., “justin”), abbreviated words (“satellt”), misspelled words (“porche”), and words in a
different language (“oiseau”)).

3.3.7 Text Source Weights
Finally, we investigated if we could improve classification performance by adjusting the weights of each
text source. Because the TF/IDF method computes a term’s weight (i.e., importance) from its frequency,
we can increase the weight of a text source by simply including it multiple times in the representative text
document. In the previous experiments, all text sources were included once. We experimented with many
different weight settings but found no significant improvement in classification performance. This may
be explained by the effect that a single occurrence of a text source is sufficient for this type of matching
method: a word is either present in another representative text document or it is not. Changing the number
of times that a source appears in the document will change the matching score, but not the relative ordering
of all documents.

20

3.4 Conclusions
The overall conclusions of this chapter are:

• text matching methods based on TF/IDF (term frequency, inverse domain frequency) scoring perform
best on our data

• statistical significance tests show the performance difference to be significant (when compared to
non TF/IDF-based methods)

• the most useful text sources were the text found inside the 3D model file itself, and the WordNet
synonyms and hypernyms of the filename or link text

• simply using all text sources worked best, but this may be due to the relatively small size of our
dataset: adding text sources is not likely to add false cross-class matches

21

Chapter 4

Shape Matching

In this section, we briefly review previous work on shape-based retrieval of 3D models. Then, we present
results comparing several state-of-the-art shape matching methods to determine which works best on the
Princeton Shape Benchmark 3D model database.

4.1 Related work
Retrieval of data based on shape has been studied in several fields, including computer vision, computa-
tional geometry, mechanical CAD, and molecular biology. For surveys of recent methods, see [27, 56]. For
our purpose, we will only consider matching and retrieval of isolated 3D objects (so we do not consider
recognition of objects in scenes, or partial matching, for example).

3D shape retrieval methods can be roughly subdivided into three categories: (1) methods that first
attempt to derive a high-level description (e.g., a skeleton) and then match those, (2) methods that compute
a feature vector based on local or global statistics, and (3) miscellaneous methods.

Examples of the first type are skeletons created by voxel thinning [54], and Reeb graphs from meshes [17].
However, the voxel-based methods are usually sensitive to noise and small features. The mesh-based
methods typically require the input model to be 2-manifold. Unfortunately, many 3D models are created
for visualization purposes only, and often contain only unorganized sets of polygons (“polygon soups”),
possibly with missing, wrongly-oriented, intersecting, disjoint, and/or overlapping polygons. Fixing such
degenerate models is a difficult open problem [16, 36].

Methods based on computing statistics of the 3D model are more suitable for our purpose, since
they usually impose no strict requirements on the validity of the input model. Examples are shape his-
tograms [1], feature vectors composed of global geometric properties such as circularity or eccentric-
ity [57], and feature vectors (or shape descriptors) created using frequency decompositions of spherical
functions [22]. The resulting histograms or feature vectors are then usually compared by computing their
L2 distance.

Some alternative approaches use 2D views (2D projections of a 3D model), justified by the heuristic
that if two 3D shapes are similar, they should look similar from many different directions. Examples are
the “prototypical views” of Cyr and Kimia [8], and the “Light Field Descriptor” of Chen et al. [6].

4.2 Shape Matching Methods
In our experiments, we considered four shape matching methods: (1) the Light Field Descriptor (LFD) [6],
(2) the Radialized Spherical Extent Function (REXT) [59], (3) the Gaussian Euclidian Distance Transform
(GEDT) [22], and (4) the Spherical Harmonics Descriptor (SHD) [22]. These four methods have been
shown to be state-of-the-art in a recent paper [50]. Each of these methods first normalizes a 3D model for
translation (by placing the origin at the center of mass) and scale (using the average distance of surface
samples to the center of mass, for example). To review, we now give a short description of each shape
descriptor.

22

LFD
a set of 10 2D projections as seen from half the vertices of a dodecahedron. To compare two LFDs,
a similarity score is computed for each correspondence generated by 60 symmetries of a dodecahe-
dron (i.e. all symmetries excluding reflections). This similarity score is the sum of the scores of 10
pairwise image comparisons (using an image matching method). The similarity score of two LFDs
is then the minimum score of the 60 correspondences. Each 3D model is represented by 10 LFDs,
evenly distributed across the viewing sphere [6]

REXT
a collection of spherical functions that first decomposes 3D space into concentric shells and then
computes the Spherical Extent Function (a function returning the distance of a polygonal surface
from the center of mass depending on spherical angle and radius) of the intersection of the model
with each shell independently. The spherical harmonic decomposition of each spherical function is
computed and the norms of the complex coefficients are stored. Shapes are compared by computing
the L2 distance between two sets of norms [59]

GEDT
a 3D grid function, whose value at each point is given by the composition of a Gaussian with the
Euclidian Distance Transform (EDT) of the (rasterized) surface. Spherical representations are com-
puted by intersecting the voxel grid with concentric spheres about the center and scaling each spher-
ical function by the square root of the corresponding area. The spherical harmonic coefficients, up
to a certain order (e.g., 16), are stored for each one, yielding a 3D descriptor. Shapes are compared
by computing the L2 distance between two descriptors. Note that this is the only method out of the
four tested that is not rotation invariant [22]

SHD
a rotation invariant representation of the GEDT obtained by computing the restriction of the func-
tion to concentric spheres and storing the norm of each (harmonic) frequency, resulting in a 2D
rotation invariant descriptor. Shapes are compared by computing the L2 distance between two de-
scriptors [22]

We ran an experiment in which these four methods were used to compute a similarity score for every
pair of 3D models in the test set of the Princeton Shape Benchmark. The similarity scores were used to
rank the matches for each model and compute an average precision-recall curve for each matching method
with respect to the benchmark’s base classification. Results are shown in Figure 4.1 (see [50] for details).
From these curves, we find that the Light Field Descriptor provides the best retrieval performance in this
test, and thus we use it in all subsequent experiments.

Normality tests on all pairs of differences showed that they are all not normally distributed. Each signif-
icance test showed that all differences are significant, except between GEDT and SHD: the randomization
P value is 33% and Pwc is 1.62.

23

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

pr
ec

is
io

n

recall

LFD
REXT
GEDT

SHD
random

Figure 4.1: Average precision/recall for four shape matching methods, and random retrieval. This figure is a partial
reproduction of one in [50]

24

Chapter 5

Comparing
Text Matching to Shape Matching

Next, we compare the classification performance of the best text matching method to the best shape match-
ing method. As simulated text queries we used (1) the model’s representative document (as described in
Section 3.2) and (2) the category names of the Princeton Shape Benchmark. Additionally, we examined
retrieval performance when the query is left out of the results.

5.1 Using the Representative Text Documents as Queries
Figure 5.1 shows the resulting average precision/recall plot. The shape matching method significantly
outperforms text matching: average precision is 44% higher. All significance tests show this difference to
be significant.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

pr
ec

is
io

n

recall

3D shape, LFD
text, TF/IDF

Figure 5.1: Average precision/recall for text and 3D shape matching, using a model’s representative text document as
a simulated user query

25

source percentage
filename 100

path 99.6
model file 83
page title 79

synonyms and hypernyms 69
link 49

page context 24

Table 5.1: For each source, percentage of training set models with text

The main cause of the relatively poor performance of the text matching method is the low quality of
text annotation of online 3D models: it is either missing, or of poor quality. Names of models were, for
example:

• meaningless (e.g., “avstest” for a face)

• misspelled (e.g., “ferrar” for a ferrari)

• too specific (e.g., “camaro” for a car)

• not specific enough (e.g., “model” for a car)

• in a different language (e.g., “oiseau” for a bird)

By running a spell checker (aspell, http://aspell.sourceforge.net) on the filenames with
the digits removed, we found that 36% of all model filenames were not English words.

Furthermore, often for several potential text sources there simply was no useful text available. For
example, many link texts were either a repeat of the filename, or contained no text at all: for 446 models
in the training set (51%) no link text could be found (usually a thumbnail image is used instead). Table 5.1
shows for each source for what percentage of the models in the training set text could be found.

Even commercial 3D model databases are not necessarily well annotated. Of three commercial databases
available to us (provided by CacheForce, De Espona, and Viewpoint, containing approximately 2000, 1000,
and 1000 models respectively), only one was consistently well annotated.

5.2 Using Category Names as Queries
In all text matching experiments, the representative document created for each 3D model was used as a
query. However, because the size and quality of text annotation varies a lot from model to model, one may
argue that this text is not representative of actual user queries. Users of a retrieval system are more likely
to enter a few descriptive keywords or class names. To investigate classification performance given this
kind of user queries, we ran an additional classification experiment in which the full category names of the
Princeton Shape Benchmark were used as simulated user queries (e.g. “plane stealth bomber f117” for the
category with models of F117 planes). Some obvious keywords were added manually (e.g., “blimp” and
“zeppelin” for the “dirigible hot air balloon” category, or “house” for the “home” category, see [50] for a
complete list of the category names).

Figure 5.2 shows the resulting precision/recall plot. The average precision achieved when using these
query keywords was 11% higher than when using the representative documents, but still 30% lower than
the best shape matching method. Statistical significance tests show the results when using category names
as queries to be significantly higher than when using the representative text documents as queries, and
significantly lower than the shape matching scores (randomization P values were 0% in both cases, Pwc

was 0.24 and 0.01 respectively).

26

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

3D shape, LFD
text, TF/IDF, category name queries
text, TF/IDF, queries from repr. doc

Figure 5.2: Comparing shape matching (micro averaged precision) scores to text matching scores when using category
names as queries and when using the models’ representative documents as queries

5.3 Leaving the Query out of the Results
In all retrieval tests, the query itself is part of the ranked results and usually appears at or near the top
position. If we leave the query itself out of the results, any reasonable matching method will show a drop
in average precision. This drop is relatively small when category names are used as queries (as described in
Section 5.2) because in this case the only change is in the number of relevant results. Figure 5.3 shows the
resulting average precision/recall graph. Overall average precision is 0.389 for the shape matching method,
and 0.350 and 0.233 for the text matching methods.

Statistical significance testing (using all three tests) show that now the difference between shape match-
ing and text matching using representative documents as queries is still significant (Randomization P =
0%, Pwc = 0.003), but no longer significant when using category names as queries (Randomization
P = 59%, Pwc = 6.29).

Note that for a fair comparison we should also run an experiment in which we first identify 3D models
as “category representatives” for each category, and then use these as simulated shape queries (i.e. the
equivalent of using the text category name queries).

5.4 Conclusions
The main conclusion of this chapter is that for our type of data (3D models downloaded from the web),
shape matching performs better in classification tasks than text matching. The reason is the poor quality of
text annotation of such 3D models.

Note that the values of our performance measures depend a lot on the way our test database is classified.
For example, certain shape matching results (e.g. a fighter jet query returning both fighter jets and passenger
planes) can be considered “good” results, yet are punished because the results are members of multiple
classes. The effect of the classification granularity on performance metrics, as well as new metrics for
hierarchical classifications, are the subject of future research.

27

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

3D shape, LFD
text, TF/IDF, category name queries
text, TF/IDF, queries from repr. doc

Figure 5.3: Comparing shape matching (micro averaged precision) scores to text matching scores when using category
names as queries and when using the models’ representative documents as queries, but this time leaving the query out
of the results

28

Chapter 6

Combining Text and Shape Matching

In our final tests, we investigate how to combine the best text and shape matching methods to provide better
retrieval results than can be achieved with either method alone.

6.1 Related Work
A considerable amount of research has been presented on the problem of how to best combine multiple
classifiers [20]. Most work in this area has been done in content-based image retrieval. For example, Sri-
hari presents a system (“Piction”) that identifies faces in annotated news photographs using a face detection
algorithm and Natural Language Processing of the captions [53]. Smith and Chang describe a system for
the retrieval of arbitrary online images [51]. Relevant text for each image is extracted from the URL and
the alt parameter of the HTML tag, for example. However, searches based on low-level image
features or on text can not be combined. This combination has been investigated in later retrieval systems.
La Cascia et al. combine text and image features into a single feature vector, to improve search perfor-
mance [47]. Text is extracted from the referring web page, with different weights assigned depending on
the HTML tag that enclosed it (e.g., text in a <title> is more important than text in an <h4> (small
header) tag). Paek et al. present a method that combines a text- and image-based classifier for the classifi-
cation of captioned images into two classes (“indoor” and “outdoor”) [37], which improved classification
accuracy to 86.2%, from 83.3% when using the text alone. In recent work, Sable presents results for the
same data set (but using different training and test subsets), and shows an improvement in classification
accuracy from 84% to 84.9% (averaged over seven text classifiers) [40].

In a review on multimodal classification in video indexing, Snoek and Worring write that this classi-
fication method is an “emerging trend in video indexing research” [52]. They present a framework for
multimodal retrieval of video, using video, audio, and text classifiers.

Jain et al., in their survey paper on statistical pattern recognition, distinguish methods by the execution
order of the classifiers: parallel, serial, or hierarchical [20]. Sebastiani calls a set of multiple classifiers
a classifier committee, which is defined by (1) a choice of k classifiers and (2) a choice of combination
function [49]. Both papers suggest a number of alternatives for the combination function. Many choices
for the combination function exist. The simplest are static combiners, for example, voting, (weighted)
averaging, or minimum. Others are trainable combiners, for which classifiers are trained such that their
independence is maximized. Examples include bagging and boosting [46]. Typically many classifiers are
needed for these methods, however.

6.2 Multiclassifiers
In previous work we suggested that the results of text and shape matching can be combined to improve clas-
sification performance [14], and proposed a combination function that simply averaged mean-normalized
matching scores. However, no evaluation was done to see which combination function works best. Here

29

we consider the simple case of combining the scores of two classifiers, using a static combination function.
We experimented with four types of functions: (1) linear weighted average, (2) minimum, (3) weighted
average/minimum rank, and (4) using confidence limits. Each combiner (except the ones based on rank)
was also tested on mean-normalized scores.

1. linear weighted average: If stext and sshape are the matching scores of a pair of models, then the
combined score is w · stext + (1 − w) · sshape, with w the weight setting. We computed average
precision/recall for w ∈ {0, 0.05, 0.1, ..., 1.0}, and picked the value of w which resulted in the
highest overall precision. The optimal weight setting for the training set was (0.1 ·stext+0.9 ·sshape)

2. minimum: the lowest matching score (signifying highest similarity) is returned

3. rank: The matching scores are ordered, and the resulting rank of each query becomes its new match-
ing score. We can then apply one of the first two functions (linear weighted average or minimum)

4. confidence limits: The “confidence limits” method is based on the idea that if a similarity score of a
single classifier is sufficiently close to zero, then that classifier can be trusted completely. The output
of other classifiers is then ignored. Sable uses a variant of this method when combining a text- and
image-based classifier [40]: feature vectors from both are classified using a Support Vector Machine,
and a confidence level is assigned to the classification, depending on the distance of the vector from
the dividing hyperplane (the decision boundary). If the confidence level of the image-based classifier
is high enough, then the text-based classifier is ignored. If not, then the text-based classifier is used
and the image-based classifier is ignored.

We used the training set to determine optimial limit settings of 0.09 and 0.22 for shape and text
matching respectively (and -2.45 and -1.5 for mean-normalized scores). If both scores were above
their limit, we reverted to the linear weighted average (other alternatives yielded worse results)

Figure 6.1 shows (in colour) the average precision/recall obtained using eight different combination
methods and shape matching alone (on the PSB test set). Table 6.1 shows the resulting average preci-
sion values achieved for each combiner, and the percentage improvement over using shape matching alone
(computed using the test set). The top three methods achieve an additional 7-11% improvement in overall
average precision. The third column of Table 6.1 shows P values of the Randomization significance test,
which shows that the top three methods produce a significant improvement. Further tests showed these
three methods to be significantly different from one another as well1 To conclude, this means that the com-
bination method “weighted average of normalized scores” produces the largest improvement over shape
matching alone.

% improvement over randomizationmethod average precision
shape alone P value

shape (LFD) 0.496 - -
weighted average, normalized scores 0.550 11 0

weighted average 0.537 8.3 0
confidence limits 0.533 7.5 0

minimum, normalized scores 0.497 0.2 93%
minimum 0.497 0.2 45%

minimum rank 0.487 -1.8 8.6%
confidence limits, normalized scores 0.481 -3.0 4.0%

weighted average rank 0.480 -3.4 0.1%

Table 6.1: Average precision achieved when combining the matching scores of the text and shape matching methods
using various static combiners, and the percentage improvement over shape matching alone

1Even though none of all possible pairs of difference are normally distributed, the Student’s t-test showed the same significance
results as the randomization test. Also, Pwc values were low (¡ 0.02) for the top three methods, high ([0.35 − 3.3]) for the bottom
five.

30

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900
weighted average, normalized

weighted average
confidence limits

minimum normalized
minimum

3D shape, LFD
minimum rank

confidence limits, normalized
weighted average rank

Figure 6.1: Average precision/recall achieved when combining the matching scores of the text and shape matching
methods using various static combiners (colour graph)

These results confirm that the text and shape representations of a 3D model are sufficiently independent,
such that when they are combined, they become more discriminating. There may well be other representa-
tions (e.g. appearance-based) that capture a very different aspect of a 3D model, and as such could increase
performance even further.

6.3 Conclusions
The main conclusion of this chapter is that by using a simple static combination function on the shape and
text matching scores, a significant retrieval performance improvement can be achieved.

31

Chapter 7

Conclusions and Future Work

This report evaluates text and shape matching methods for retrieval of online 3D models, as well as their
combination, and is an extended version of the paper [34]. Classification tests were done using the Prince-
ton Shape Benchmark, a large benchmark database of 3D models downloaded from the web.

For text matching, we found that a variant of TF/IDF showed the best classification performance. Text
found inside a 3D model file itself and synonyms and hypernyms (category descriptors) of the model
filename were most useful for classification.

The currently best shape matching method (which uses Light Field Descriptors [6]) significantly out-
performed the best text matching method, yielding 44% higher average precision. The main reason is that
the quality of text annotation of online 3D models is relatively poor, limiting the maximum achievable
classification performance with a text-based method.

We investigated several simple multiclassifiers, and found that a function returning the weighted aver-
age of normalized matching scores produced a statistically significant improvement in average precision of
about 11%.

The main contribution of this work is that it demonstrates the advantage of using shape-based matching
methods over text-based methods for retrieval of 3D models. This should encourage designers of future
3D model retrieval systems to incorporate query methods based on shape, and other attributes that do not
depend on annotation provided by humans, as they hold much potential for improving retrieval results.

A separate contribution is a chapter on evaluation metrics and statistical significance testing of the
results of classification experiments. Unlike in our earlier paper [34], all results have now been tested
for statistical significance. We found that in all cases the Student’s t-test and the Randomization test (on
means of matched pairs) produced identical significance results, even though normality tests showed that
we should not use the Student’s t-test.

For statistical significance testing we propose a new metric Pwc, the weighted cumulative probability,
computed using Wilcoxon’s Sum of Signed Ranks statistical test. It can be used as an indication of the
statistical significance of differences across a distribution. If Pwc is relatively high (e.g. > 0.25), then the
graph from which it is computed should be examined to gain insight into which subset of the differences is
significant (e.g. the middle 30%, the top 25%, etc.).

Some topics for future work are:

• In this work we found that the text inside the 3D model file is relatively useful for classification. This
text is the combination of several different text sources found inside the file (e.g. metadata, texture
filenames, part names, etc.). Next, we would like to investigate what the relatively value is of each
of these sources

• Applying Natural Language Processing (NLP) as an extra preprocessing step to the source text
• Incorporating other attributes of 3D models, such as colour, texture, and structural information, per-

haps using more sophisticated multiclassifiers
• Developing new performance metrics for hierarchical classifications
• Investigating if shape matching and clustering methods can be used to improve the text annotation

of 3D models

32

Acknowledgements

We thank Professor Richard Gill of the Department of Mathematics of Utrecht University for his many
useful comments on the statistical significance testing of our results. Patrick Min was supported in part
by the AIM@SHAPE Network of Excellence grant 506766 by the European Commission. The National
Science Foundation provided partial funding for this project under grants CCR-0093343 and IIS-0121446.

33

Appendix: Detailed Results of
Statistical Significance Tests

This appendix has the results of all statistical significance tests we ran. Each table cell has, from top to
bottom: (1) the significance value of the normality test, (2) the significance value of the Student’s t-test, (3)
the P value of the Randomization test, and (4) the Pwc value.

If for the normality test or the t-test the absolute t value is too high (i.e. beyond the highest value in our
lookup table), then the cell contains NOT SIG. If for the t-test the significance value is higher than 0.05
then the value is printed in bold. The same is true for the Randomization P value. In this way it is easy to
see that both tests always produce the same qualitative answer.

1 2 3 4 5 6

norm 0.01 0.01 0.01 0.01 0.01 0.01

t-test 0.0005 0.0001 0.0001 0.0001 0.0001 0.00010 TF/IDF log occur
rand 0.0001 0 0 0 0 0

Pwc 0.0482 0.0757 0.0216 0.012 0.0388 0.0005

norm 0.01 0.01 0.01 0.01 0.01

t-test 0.0001 0.0001 0.0001 0.0001 0.00011 TF/IDF log words
rand 0 0 0 0 0

Pwc 0.0249 0.0169 0.0139 0.0401 0.0007

norm 0.01 0.01 0.01 0.01

t-test 0.0001 0.0001 0.0001 0.00012 TF/IDF words
rand 0 0 0 0

Pwc 0.0204 0.0143 0.0394 0.0037

norm 0.01 0.01 0.01

t-test 0.2 0.0001 0.00013 Kullback-Leibler
rand 0.1767 0 0

Pwc 0.337 0.087 0.0085

norm 0.01 0.01

t-test 0.0001 0.00014 K-nearest neighbours
rand 0 0

Pwc 0.0536 0.0102

norm 0.01

t-test 0.00015 Naive Bayes
rand 0

Pwc 0.0126

norm
t-test6 Random
rand
Pwc

Table 7.1: Text matching methods, micro-average precision (Section 3.3.1)

34

1 2 3 4 5 6

norm 0.01 0.01 0.01 0.05 NOT SIG 0.01

t-test 0.05 0.0005 0.0001 0.0001 0.0001 0.00010 TF/IDF log occur
rand 0.012 0 0 0 0 0

Pwc 0.0084 0.0128 0.0072 0.0075 0.0053 0.0269

norm 0.01 0.01 0.05 0.05 0.01

t-test 0.0001 0.0001 0.0001 0.0001 0.00011 TF/IDF log words
rand 0 0 0 0 0

Pwc 0.0024 0.0078 0.0082 0.0035 0.029

norm 0.01 0.01 0.05 0.01

t-test 0.0001 0.0001 0.0001 0.00012 TF/IDF words
rand 0 0 0 0

Pwc 0.0101 0.011 0.0074 0.0272

norm 0.01 0.01 0.01

t-test 0.01 0.0001 0.00013 Kullback-Leibler
rand 0.0025 0 0

Pwc 0.0183 0.0053 0.0145

norm 0.01 0.01

t-test 0.001 0.00014 K-nearest neighbours
rand 0 0

Pwc 0.009 0.0218

norm 0.01

t-test 0.00015 Naive Bayes
rand 0

Pwc 0.0245

norm
t-test6 Random
rand
Pwc

Table 7.2: Text matching methods, macro-average precision (Section 3.3.2)

35

1 2 3 4 5 6

norm 0.01 0.01 0.01 0.01 0.01 0.01

t-test 0.0001 0.0001 0.0001 0.0001 0.0001 0.00010 TF/IDF log occur
rand 0 0 0 0 0 0

Pwc 0.0349 0.0243 0.0136 0.0072 0.0068 0.0026

norm 0.01 0.01 0.01 0.01 0.01

t-test 0.0001 0.0001 0.0001 0.0001 0.00011 TF/IDF log words
rand 0 0 0 0 0

Pwc 0.0134 0.0113 0.0073 0.0055 0.0029

norm 0.01 0.01 0.01 0.01

t-test 0.0001 0.0001 0.0001 0.00012 TF/IDF words
rand 0 0 0 0

Pwc 0.008 0.0071 0.0072 0.0049

norm 0.01 0.01 0.01

t-test 0.0001 0.0001 0.00013 Kullback-Leibler
rand 0 0 0

Pwc 0.0274 0.0254 0.0067

norm 0.01 0.01

t-test 0.0001 0.00014 K-nearest neighbours
rand 0 0

Pwc 0.0138 0.0084

norm 0.01

t-test 0.00015 Naive Bayes
rand 0

Pwc 0.0091

norm
t-test6 Random
rand
Pwc

Table 7.3: Text matching methods, DCG (Section 3.3.2)

1 2 3

norm 0.01 0.01 0.01

t-test 0.0001 0.0001 0.00010 LFD
rand 0 0 0

Pwc 0.0134 0.0285 0.0077

norm 0.01 0.01

t-test 0.01 0.00051 REXT
rand 0.0081 0.0001

Pwc 0.118 0.135

norm 0.01

t-test NOT SIG2 GEDT
rand 0.3251
Pwc 1.616

norm
t-test3 SHD
rand
Pwc

Table 7.4: Shape matching methods (Section 4.2

36

1 2

norm 0.01 0.01

t-test 0.0001 0.00010 3D shape, LFD
rand 0 0

Pwc 0.0054 0.0116

norm 0.01

t-test 0.00011 text, using repr. docs
rand 0

Pwc 0.2341

norm
t-test2 text, using category names
rand
Pwc

Table 7.5: Comparing shape matching, text matching using representative documents as queries, and text
matching using category names as queries (Section 5.2)

1 2

norm 0.01 0.01

t-test 0.0001 NOT SIG0 3D shape, LFD
rand 0 0.5941
Pwc 0.0029 6.2924

norm 0.01

t-test 0.00011 text, using repr. docs
rand 0

Pwc 0.009

norm
t-test2 text, using category names
rand
Pwc

Table 7.6: Comparing shape matching, text matching using representative documents as queries, and text
matching using category names as queries, and leaving the query out of the results (Section 5.3)

37

1 2 3 4 5 6 7 8

norm 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

t-test 0.0001 0.0001 0.001 0.05 0.0001 NOT SIG NOT SIG 0.10 3D shape, LFD
rand 0 0 0.0005 0.0395 0 0.4485 0.9298 0.0859
Pwc 0.0078 0.0134 0.8544 1.9831 0.0124 0.3671 3.2962 1.5035

norm 0.01 0.01 0.01 0.01 0.01 0.01 0.01

t-test 0.0001 0.0001 0.0001 0.0005 0.0001 0.0001 0.00011 weighted avg.
rand 0 0 0 0.0002 0 0 0

Pwc 0.0057 0.015 0.0667 0.0572 0.0066 0.2932 0.0437

norm 0.01 0.01 0.01 0.01 0.01 0.01

t-test 0.0001 0.0001 0.0001 0.0001 0.0001 0.00012 weighted avg., norm.
rand 0 0 0 0 0 0

Pwc 0.0088 0.0213 0.0234 0.0118 0.0724 0.0137

norm 0.01 0.01 0.01 0.01 0.01

t-test NOT SIG 0.0001 0.0005 0.005 0.23 weighted avg. rank
rand 0.8025 0 0.0003 0.0031 0.1803
Pwc 4.3711 0.0137 0.9577 0.0862 1.5829

norm 0.01 0.01 0.01 0.01

t-test 0.0001 0.05 0.0001 0.24 conf. limits, norm.
rand 0 0.0274 0 0.1766
Pwc 0.0428 1.9067 0.0052 1.9649

norm 0.01 0.01 0.01

t-test 0.0001 0.0001 0.00015 conf. limits
rand 0 0 0

Pwc 0.0066 0.2133 0.0392

norm 0.01 0.01

t-test NOT SIG 0.16 minimum
rand 0.9834 0.0596
Pwc 2.9484 1.3982

norm 0.01

t-test 0.0057 minimum, norm.
rand 0.0024

Pwc 0.51

norm
t-test8 minimum rank
rand
Pwc

Table 7.7: Comparing shape matching and text+shape matching using various static combination functions
(Section 6.2)

38

Bibliography

[1] A.P.Ashbrook, N.A.Thacker, P.I.Rockett, and C.I.Brown. Robust recognition of scaled shapes using
pairwise geometric histograms. In Proc. BMVC, pages 503–512, Birmingham, UK, July 1995.

[2] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-Wesley, 1999.

[3] A. B. Benitez and S.-F. Chang. Semantic knowledge construction from annotated image collections.
In Proc. Int. Conf. on Multimedia and Expo ICME, Lausanne, Switzerland, 2002.

[4] J. Chambers, W. Cleveland, B. Kleiner, and P. Tukey. Graphical Methods for Data Analysis. Chapman
& Hall, 1983.

[5] D.-Y. Chen and M. Ouhyoung. A 3D object retrieval system based on multi-resolution Reeb graph.
In Proc. Computer Graphics Workshop, pages 16–20, Taiwan, June 2002.

[6] D.-Y. Chen, M. Ouhyoung, X.-P. Tian, Y.-T. Shen, and M. Ouhyoung. On visual similarity based 3D
model retrieval. In Proc. Eurographics, Granada, Spain, September 2003.

[7] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley-Interscience, 1991.

[8] C. M. Cyr and B. B. Kimia. 3D object recognition using shape similarity-based aspect graph. In Proc.
ICCV. IEEE, 2001.

[9] M. de Buenaga Rodrı́guez, J. M. Gómez-Hidalgo, and B. Dı́az-Agudo. Using WordNet to comple-
ment training information in text categorization. In Proc. RANLP, Stanford, March 1997.

[10] T. G. Dietterich. Approximate statistical tests for comparing supervised classification learning algo-
rithms. Neural Computation, 10(7):1895–1923, 1998.

[11] J. Filliben. The probability plot correlation coefficient test for normality. Technometrics, 17(1):111–
117, 1975.

[12] FindSounds. Sound file search engine. http://www.findsounds.com.

[13] R. A. Fisher. Design of Experiments. Macmillan, New York, 9th edition edition, 1971.

[14] T. Funkhouser, P. Min, M. Kazhdan, J. Chen, A. Halderman, D. Dobkin, and D. Jacobs. A search
engine for 3D models. ACM Transactions on Graphics, 22(1), January 2003.

[15] Google. Image search. http://www.google.com/images.

[16] A. Gueziec, G. Taubin, F. Lazarus, and W. Horn. Converting sets of polygons to manifold surfaces
by cutting and stitching. IEEE Visualization, pages 383–390, 1998.

[17] M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii. Topology matching for fully automatic
similarity estimation of 3D shapes. In Proc. SIGGRAPH, pages 203–212, 2001.

[18] D. Huijsmans and N. Sebe. How to complete performance graphs in content-based image retrieval:
Add generality and normalize scope. IEEE PAMI, 27(2), February 2005.

39

[19] D. Hull. Using statistical testing in the evaluation of retrieval experiments. In Proc. ACM Conference
on Research and Development in Information Retrieval, pages 329–338, Pittsburgh, USA, 1993.

[20] A. K. Jain, R. P. Duin, and J. Mao. Statistical pattern recognition: A review. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22(1):4–37, 2000.

[21] K. Järvelin and J. Kekäläinen. IR evaluation methods for retrieving highly relevant documents. In
Proc. ACM SIGIR, pages 41–48, Athens, Greece, 2000.

[22] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Rotation invariant spherical harmonic representa-
tion of 3D shape descriptors. In Proc. SGP, pages 156–165. ACM, June 2003.

[23] T. R. Knapp. Comments on the statistical significance testing articles. Research in the Schools,
5(2):39–41, 1998.

[24] S. Kullback and R. Leibler. On information and sufficiency. Ann. Math. Stat., 22:79–86, 1951.

[25] N. I. T. Laboratory. Critical values of the normal ppcc distribution.
http://www.itl.nist.gov/div898/handbook/eda/section3/eda3676.htm.

[26] D. V. Library. DVL/Verity stop words list. http://dvl.dtic.mil/stop list.html.

[27] S. Loncaric. A survey of shape analysis techniques. Pattern Recognition, 31(8), 1998.

[28] R. Lowry. Concepts and applications of inferential statistics.
http://faculty.vassar.edu/lowry/webtext.html.

[29] A. McCallum. Bow: A toolkit for statistical language modeling, text retrieval, classification and
clustering. http://www.cs.cmu.edu/˜mccallum/bow, 1996.

[30] MeshNose. 3D objects search engine. http://www.deepfx.com/meshnose.

[31] G. A. Miller. WordNet: A lexical database for English. CACM, 38(11):39–41, 1995.

[32] P. Min. A 3D Model Search Engine. PhD thesis, Princeton University, January 2004.

[33] P. Min, A. Halderman, M. Kazhdan, and T. Funkhouser. Early experiences with a 3D model search
engine. In Proc. Web3D Symposium, pages 7–18, St. Malo, France, March 2003. ACM.

[34] P. Min, M. Kazhdan, and T. Funkhouser. A comparison of text and shape matching for retrieval of
online 3D models. In Proc. European Conference on Digital Libraries, Bath, UK, September 2004.

[35] T. Mitchell. Machine Learning. McGraw-Hill, 1997.

[36] T. Murali and T. Funkhouser. Consistent solid and boundary representations from arbitrary polygonal
data. In SIGGRAPH Symposium on Interactive 3D Graphics, pages 155–162, March 1997.

[37] S. Paek, C. L. Sable, V. Hatzivassiloglou, A. Jaimes, B. H. Schiffman, S.-F. Chang, and K. R. McK-
eown. Integration of visual and text-based approaches for the content labeling and classification of
photographs. In ACM Workshop on Multimedia Indexing and Retrieval, 1999.

[38] M. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.

[39] C. S. E. Project. plotmtv, 1995.

[40] C. Sable. Robust Statistical Techniques for the Categorization of Images Using Associated Text. PhD
thesis, Columbia University, 2003.

[41] C. Sable, K. McKeown, and K. W. Church. NLP found helpful (at least for one text categorization
task). In Proc. EMNLP, Philadelphia, PA, 2002.

40

[42] C. L. Sable and V. Hatzivassiloglou. Text-based approaches for the categorization of images. In Proc.
Research and Advanced Technologies for Digital Libraries, Paris, 1999.

[43] G. Salton. The SMART retrieval system. Prentice-Hall, Englewood Cliffs, NJ, 1971.

[44] G. Salton. Automatic text processing: the transformation, analysis, and retrieval of information by
computer. Addison-Wesley, Reading, Massachusetts, 1988.

[45] S. L. Salzberg. On comparing classifiers: Pitfalls to avoid and a recommended approach. Data Mining
and Knowledge Discovery, 1(3):317–327, 1997.

[46] R. Schapire. The strength of weak learnability. Machine Learning, 5:197–227, 1990.

[47] S. Sclaroff, M. L. Cascia, and S. Sethi. Unifying textual and visual cues for content-based image
retrieval on the world wide web. CVIU, 75(1-2):86–98, July/August 1999.

[48] S. Scott and S. Matwin. Text classification using WordNet hypernyms. In Proc. Workshop Usage of
WordNet in Natural Language Processing Systems, pages 45–52, August 1998.

[49] F. Sebastiani. Machine learning in automated text categorization. ACM Computing Surveys, 34(1):1–
47, March 2002.

[50] P. Shilane, M. Kazhdan, P. Min, and T. Funkhouser. The Princeton Shape Benchmark. In Proc. Shape
Modeling International, pages 167–178, Genoa, Italy, June 2004.

[51] J. R. Smith and S.-F. Chang. Searching for images and videos on the world-wide web. Technical
Report 459-96-25, Columbia University, August 1996.

[52] C. G. Snoek and M. Worring. Multimodal video indexing: A review of the state-of-the-art. In Proc.
Multimedia Tools and Applications, 2003.

[53] R. K. Srihari. Automatic indexing and content-based retrieval of captioned images. IEEE Computer,
28(9):49–56, September 1995.

[54] H. Sundar, D. Silver, N. Gagvani, and S. Dickinson. Skeleton based shape matching and retrieval. In
Proc. SMI, Seoul, Korea, May 2003.

[55] M. T. Suzuki. A web-based retrieval system for 3D polygonal models. In Proc. IFSA/NAFIPS, pages
2271–2276, Vancouver, Canada, July 2001.

[56] J. W. Tangelder and R. C. Veltkamp. A survey of content based 3D shape retrieval methods. In Proc.
Shape Modeling International, pages 145–156, Genoa, Italy, June 2004.

[57] G. Taubin and D. Cooper. Geometric Invariance in Computer Vision, chapter Object recognition
based on moment (or algebraic) invariants. MIT Press, 1992.

[58] C. J. van Rijsbergen. Information Retrieval. Butterworth, 1979.

[59] D. V. Vranić. An improvement of rotation invariant 3D shape descriptor based on functions on con-
centric spheres. In Proc. ICIP, volume 3, pages 757–760, September 2003.

[60] E. W. Weisstein. Paired t-test. MathWorld,
http://mathworld.wolfram.com/Pairedt-Test.html.

[61] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics, 1(6):80–83, December 1945.

41

