
A C++ Function for Evolutionary Optimisation

with Applications in Shape Matching

Patrick Min
Utrecht Universty

DRAFT, v0.47

June 14, 2005



2



Chapter 1

Introduction

This document describes the usage and implementation details of a C++ class for
evolutionary optimisation. It was developed as a CGAL extension package, but it
can be used in any other context (i.e. it does not depend on the CGAL library).
Evolutionary algorithms are one of several available techniques for non-linear op-
timisation (other examples are Powell’s direction set method and simulated an-
nealing [3]). These techniques are applied when objective functions need to be
optimised that are non-linear and not easily differentiable. For an overview of
the relatively new area of evolutionary programming, see the book by Back and
Bdck [1].
The basic idea of these algorithms lies in the theory of evolution, in particular
the “survival of the fittest” rule. A population is constructed with each individual
representing a single solution. The evolution of this population is then simulated,
with “fitter” (i.e. having better objective function values) individuals being more
likely to survive and produce offspring. Parameters such as the survival rate of a
population allow control over the rate of convergence of the algorithm. The hope
is that a slow enough convergence and sufficient variety in the population help to
avoid local minima.

1.1 Problem Description

Our C++ class deals with one kind of optimisation problem, of which a fairly
abstract description now follows. Given two objects, called a source and a tar-
get, which may be of different type, and a transformation which of an object of
the source type, the goal is to find the transformation parameters that take the
source closest to the target, given a certain distance measure. See Figure 1.1 for a
schematic overview of this type of optimisation problem.
So in order to specify a problem of this type, we have to provide:

• a source object type

• a transformed source object type

3



4 CHAPTER 1. INTRODUCTION

Source

Target Transformed
Source

Objective
Function

ParametersTransformation

Figure 1.1: Schematic overview of the type of problem our code can handle

• a target object type

• a (parameterised) transformation which transforms an object of the source
type

• an objective function which takes an object of the target type and one of the
transformed source type and returns a distance (or error) value

The “best” parameters of the transformation (given the objective function) now
have to be found. In terms of our evolutionary algorithm, an individual in the
population contains specific values for each transformation parameter. Its “fitness”
is computed by transforming the source object using these parameter settings, and
evaluating the distance between the transformed source and the target. These steps
are roughly indicated with the dashed arrow in Figure 1.2.

Source

Target Transformed
Source

Objective
Function

ParametersTransformation

Evolutionary
Optimization

Figure 1.2: A single iteration of the optimization process



Chapter 2

Examples

The parametes of the method are the type of the (1) source object, (2) transformed
source object, (3) target object, and the (4) transformation and (5) objective func-
tion. To implement this parameterisation, we use a construct called a traits class. A
traits class is a templated class that allows one to parameterise aspects of a method.
It is an extra layer of indirection for specifying a templated class.

2.1 Example: Matching 2D Pointsets under Translation
and Scale

Suppose that we took a frontal picture of the face of a large number of people.
For each picture, we then recorded the position of the eyes, nose, and corners of
the mouth, giving five 2D points. Such a set of five 2D points will be our source
datatype.
Later, someone brings us a new picture of a face, taken from the front, and wants
to know if there are pictures with a similar arrangement of eyes, nose, and mouth
in our database. So in this picture we also record the position of these features. It is
our target object, so the target datatype is also a 2D pointset containing five points.
Let’s assume we can be sure that all pictures were taken exactly from the front, and
”straight up” (i.e, the eyes are on top), but we don’t know where in the picture the
face is positioned, and how large the face is on the picture. So the only potential
“variability” is in the position and size of the face, in order words, in 2D translation
and uniform scale (assuming we know the aspect ratio of the camera pixels). As a
result, we have three transformation parameters, namely (tx, ty) and s.
For the source 2D pointset we will now try to find the set of transformation param-
eters (tx, ty,s) that take it closest to the target 2D pointset. Of course we have to
decide what “closest” means, i.e. we have to define a distance between two of our
pointsets: we will use the average Euclidean distance over all five corresponding
point pairs. This will be the objective function.
Now we are ready to provide a list as in Section 1.1:

5



6 CHAPTER 2. EXAMPLES

• source object: a 2D pointset of 5 points

• transformed source object: a 2D pointset of 5 points

• target object: a 2D pointset of 5 points

• transformation: a 2D uniform scale followed by a 2D translation

• objective function: the average Euclidean distance over all 5 corresponding
point pairs

2.1.1 Types

We implement the 2D pointset as a separate class PointSet2D, and have to specify
that this will be the source and target type:

typedef PointSet2D SourceType;

typedef PointSet2D TransformedSourceType;

typedef PointSet2D TargetType;

The PointSet2D constructor should contain initialisation code that creates a pointset
of the required size (5 in our example).

2.1.2 Operations

Next, the transformation and objective function have to be specified. Both are im-
plemented as a function object, by defining a class that has an operator() member
function. In the implementation we use the identifier Map for a transformation. The
objective function is called an Error function. First, we specify that the map and
error function are of a certain type:

typedef class Map_2d_Scale_Trans MapType;

typedef class Avg_Euclidean ErrorType;

We also declare two corresponding member variables of our traits class, and define
methods that return a copy:

Map_2d_Scale_Trans& map_object() const {

return (Map_2d_Scale_Trans&) map; }

Avg_Euclidean& error_object() const {

return (Avg_Euclidian&) error; }

private:

Map_2d_Scale_Trans map;

Avg_Euclidean error;

The functions themselves are defined in a separate class. For example, the declara-
tion of the Map 2d Scale Trans class looks like this:



2.1. EXAMPLE: MATCHING 2D POINTSETS UNDER TRANSLATION AND SCALE7

class Map_2d_Scale_Trans : public Map

{

public:

void operator()(const PointSet2D& source,

PointSet2D& result,

const vector<double>& parameters);

};

In this example, the parameters are the three degrees of freedom of the transfor-
mation, determining the x and y translation, and scale factor.
To help the optimisation process, we should specify reasonable ranges for each pa-
rameter. This should be done in the constructor of the mapping function Map 2d Scale Trans,
as follows:

• declare an initial ranges variable in its class header file:
static double initial ranges[6];

• specify the actual initial values in the .cc file:
double Map 2d Scale Trans::initial ranges[6] = {-25, 25, -25,

25, -1, 1};

• in its constructor, call:
Map::init parameter ranges(initial ranges, 6);

The mapping function should also define three informational functions (which
are virtual functions in the base class Map), get name(), get nr pars(), and
get par name(int index):

string get_name() { return "Map_2d_Scale_Trans"; }

int get_nr_pars() { return 3; }

string get_par_name(int index) { return par_names[index]; }

par names is a static member variable:

private:

static string par_names[3];

It is defined in the .cc file:

string Map_2d_Scale_Trans::par_names[3] =

{"translation x", "translation y", "scale"};

2.1.3 Running the optimisation

After having created the traits classes, all we have to do next is create instances of
the traits classes and source and target variable.
In our example, the required variables can be declared as follows:



8 CHAPTER 2. EXAMPLES

#include "evo_traits.h"

#include "evo_par_default_traits.h"

#include "EvoFunc.h"

template class EvoFunc<evo_traits, evo_par_default_traits>;

evo_traits::SourceType source;

evo_traits::TargetType target;

evo_traits gt;

EvoFunc<evo_traits, evo_par_default_traits> my_evo_opt(source, target, gt);

Now we are ready to run the optimisation:

my_evo_opt.run(250); // run a maximum of 250 iterations

2.1.4 Results

The optimisation terminates when one of the following is true:

• The best error value so far falls below a certain limit

• The specified maximum number of iterations has been run

It is then possible to get the parameter settings resulting in the smallest error value:

Indiv *ind_p = my_evo_opt.get_best_indiv();

int nr_pars = ind_p->get_nr_pars();

for(int i=0; i < nr_pars; i++) {

cout << i << ": " << (*ind_p)[i] << endl;

}

Next, to get the best error value:

double best_error = my_evo_opt.evaluate_individual(*ind_p);

2.2 Matching 2D Pointsets
under 2D Affine Transformations

This next example is very similar to the one in the previous section, just the trans-
formation and objective function are slightly more complicated.
Now we want to find the 2D affine transformation which takes one 2D pointset into
another, whereby distance between the pointsets is measured using the average
Hausdorff distance. Or, given in list form as in the Section 1.1:

• source object type: a 2D pointset



2.2. MATCHING 2D POINTSETSUNDER 2D AFFINE TRANSFORMATIONS9

2D Pointset
2D Affine

Transformation

Transformed
2D Pointset2D Pointset

Avg Hausdorff
Distance

orientation,
translation, scale

Figure 2.1: The schematic of Figure 1.1 for this example

• transformed source object type: a 2D pointset

• target object type: a 2D pointset

• transformation: a 2D affine transformation

• objective function: the average Hausdorff distance

Figure 2.1 shows the same schematic as in Figure 1.1, but now with the specifics
of this example filled in.

2.2.1 Types

These definitions are identical to those in the previous example:

typedef PointSet2D SourceType;

typedef PointSet2D TransformedSourceType;

typedef PointSet2D TargetType;

2.2.2 Operations

These definitions and declarations are also the same as in the previous example,
with different names for the map and for the error (objective) function:

typedef class Map_2d_Aff MapType;

typedef class Avg_Hausdorff ErrorType;

Instantiating them in the traits class:

Map_2d_Aff map_object() const { return map; }

Avg_Hausdorff error_object() const { return error; }

private:

Map_2d_Aff map;

Avg_Hausdorff error;

In this example, the parameters are the five degrees of freedom of a 2D affine
transformation, determining the rotation angle, x and y translation, and x and y
scale.



10 CHAPTER 2. EXAMPLES

2.2.3 Running the optimisation

This part is identical to that of the previous example.

2.3 Source Code Examples

There are source code examples in the evofunc/src/examples subdirectory (ac-
tually there is only one just now).

2.3.1 example1

matching 2D pointsets under translation and rotation

The mapping function (transformation) is defined in the Map 2d Iso class, which
you can find in evofunc/src/map functions.
The error function (objective function, distance measure) is the average Hausdorff
distance, defined in Avg Hausdorff.h (in evofunc/src/error functions).
Traits class definitions are stored in evofunc/src/traits. The traits class bring-
ing the 2D isometric transformation and the average Hausdorff distance together is
defined in evo traits 2d iso avg hausdorff.h.
After all this has been set up, the main() function of the example program is
straightforward. It initializes a source and a target pointset, and makes the target
be a transformed version of the source. The optimization then tries to recover the
three transformation parameters tx, ty, and angle φ .

2.3.2 example2

computing fitness values for parameter ranges

For this purpose, the EvoFunc class has a function tt run 2d grid:

void run_2d_grid(int index[2],

vector<vector<double> >& fitness_matrix);

The indices of the parameters to use are passed in index, the resulting 2D array
of fitness values is returned in fitness matrix. The function also writes these
values to a file grid <i1><i2>.dat (with <i1> and <i2> the indices passed in
index), in a format suitable for gnuplot.



Chapter 3

Transformation and Error
Functions

This chapter describes the transformation (mapping) and error (objective) functions
that are included in the evofunc package.
The map functions are in evofunc/src/map functions, the error functions in
evofunc/src/error functions, and the traits classes combining them can be
found in evofunc/src/traits.

3.1 Transformation Functions

3.1.1 2D Isometry

3.1.2 2D Similarity

3.1.3 2D Affine

3.1.4 2D Perspective Projection

3.1.5 2D General Projection

3.1.6 3D General Projection

3.2 Error Functions

3.2.1 Hausdorff distance

3.2.2 Average Hausdorff distance

11



12 CHAPTER 3. TRANSFORMATION AND ERROR FUNCTIONS



Chapter 4

Reference

Concept EvoFunc Traits

Definition

The EvoFunc Traits traits class specifies object and function types the user has
to define in order to be able to use the EvoFunc optimisation class.

Types

EvoFunc Traits::SourceType The type of the object to be transformed

EvoFunc Traits::TransformedSourceType The type of the object after trans-
formation

EvoFunc Traits::TargetType The type of the object we need to get “close” to

Creation

Only a default constructor is required.

Operations

Member functions for the transformation and for computing the distance value have
to be provided.

EvoFunc Traits::MapType A function object that takes three parameters: (1) an
object of type SourceType, (2) an object of type TransformedSourceType,
and (3) a list of parameters of type vector<double>. It should transform
the source object according to the parameter settings, and store the result in
the second parameter

13



14 CHAPTER 4. REFERENCE

EvoFunc Traits::ErrorType A function object that takes two parameters, one
of type TransformedSourceType and one of type TargetType, and re-
turns a distance value of type double

Has Models

Currently, two models have been implemented for this traits class:
evo traits 2d aff avg hausdorff

evo traits 3d proj avg hausdorff



15

Concept EvoPar Traits

Definition

All optimisation parameters are initialised to “reasonable” defaults, defined in the
EvoPar class. A traits class has to be defined containing a setting for each op-
timisation parameter. No types or operations are defined in this traits class, just
constants.

Constants

Stopping criteria

int EvoPar Traits::MAX ITERATIONS

The maximum number of iterations the optimisation is allowed to run

double EvoPar Traits::TERMINATION CUTOFF

If the error value is below this limit, optimisation will stop

double EvoPar Traits::ERROR EPSILON

If the current and previous error value differ by less than this value, optimi-
sation will stop

Evolutionary optimisation parameters
The default values for these parameters were taken from [2].

int EvoPar Traits::POPULATION SIZE

The initial population size

double EvoPar Traits::PARENTS PERCENTAGE

The percentage of the population that will become a parent

int EvoPar Traits::NR CHILDREN

The number of children per parent pair

Miscellaneous parameters

int EvoPar Traits::VERBOSITY

Setting this to 0 disables all output to stdout during the optimisation (by
default set to 1)

Other variables of the method are, for example, the way individuals are mutated
and recombined, how parents are selected, and how survivors are selected. The
methods we use were also taken from [2]. In future versions of EvoFunc, it will be
possible to make a selection from multiple choices for each of these methods.

Creation

A default constructor is sufficient.



16 CHAPTER 4. REFERENCE

Has Models

The evo par default traits class is an example model of the EvoPar Traits

concept. It specifies a reasonable default value for each parameter.



Appendix

Compiling the library

This package was successfully compiled under a Linux kernel 2.4.20, using gcc

version 3.2.2, under Mac OS X kernel Darwin 6.8, using gcc, and under Windows
2000, using Visual Studio C++ 7.1.
First download and unpack the file evofunc-0.47.tar.gz. It will unpack to a
subdirectory evofunc-0.47.

• Linux and Mac OS X

1. run make in the directory evofunc-0.47/src/lib

2. add this directory to your library file search path (using -L)

3. add the evofunc-0.47/src directory to your include file search path
(using -I)

4. add -levofunc to your link line

• Windows

1. in Visual Studio, create a new project evofunc as a Win32 project,
static library, no precompiled headers

2. Note: change the project location to evofunc-0.47/src/lib

3. add all files in evofunc-0.47/src/lib

4. build the project

Compiling example programs

To compile the example program (which is in evofunc-0.47/src/examples/example1/example1.cc):

• Linux and Mac OS X

1. change to the directory evofunc-0.47/src/examples/example1

2. run make

17



18 CHAPTER 4. REFERENCE

• Windows

1. in Visual Studio, create a new project example1 as a Win32 console
project, and check the option “Empty Project”

2. Note: change the project location to evofunc-0.47/src/examples/example1

3. add the file example1.cc

4. add the files in evofunc-0.47/src/data types, except PointSet3D.*
and MyRandom.*

5. add the files in evofunc-0.47/src/error functions

6. add the files Map.* and Map 2d Iso.* that are in evofunc-0.47/src/map functions

7. select one of the source files (!), and open the project properties dialog
(Project → evofunc Properties)

8. select C/C++ → General → Additional Include Directories, and add
the directory evofunc-0.47/src

9. select Linker → General → Additional Library Directories, and add
the directory evofunc-0.47/src/lib/Debug

10. select Linker → Input → Additional Dependencies, and type evofunc.lib

11. now build the project

Using the Traits Class Types and Functions

Here we describe how the types and functions of the traits class are used in the
EvoFunc class. It is not necessary to know this for using the EvoFunc class, but it
is useful in case you want to know more about how to use a traits class.
First, we need to put some typedef’s in the EvoFunc class definition that refer to
our method parameters:

typedef typename Traits::SourceType SourceType;

typedef typename Traits::TransformedSourceType TransformedSourceType;

typedef typename Traits::TargetType TargetType;

typedef typename Traits::MapType MapType;

typedef typename Traits::ErrorType ErrorType;

We also maintain references to the source, transformed source, target and traits
class, and copies of the map and error function objects:

private:

SourceType& source;

TransformedSourceType& transformed_source;

TargetType& target;



19

const Traits& gen_traits;

MapType map;

ErrorType error;

The EvoFunc constructor initializes the references and copies the function objects:

template<class Traits>

EvoFunc<Traits>::EvoFunc(SourceType& source_ref,

TransformedSourceType& transformed_source_ref,

TargetType& target_ref,

const Traits& evo_traits_ref) :

source(source_ref),

transformed_source(transformed_source_ref),

target(target_ref),

evo_traits(evo_traits_ref),

map(evo_traits.map_object()),

error(evo_traits.error_object())

{

...

Now it is straightforward to call both functions:

TransformedSourceType result;

// get_pars() returns a reference to an individual’s parameters

map(source, result, ind_p->get_pars());

double error_value = error(result, target);



20 CHAPTER 4. REFERENCE



Bibliography

[1] T. Back and T. Bdck. Evolutionary Algorithms in Theory and Practice: Evolu-
tion Strategies, Evolutionary Programming, Genetic Algorithms. Oxford Uni-
versity Press, January 1996.

[2] R. Geraerts. Pose estimation met evolutionaire strategieën. Master’s thesis,
Utrecht University, December 2001. #INF/SCR-01-30, (in Dutch).

[3] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes in C, chapter 10, Minimization or Maximization of Functions, pages
463–469. Cambridge University Press, 2nd edition, 1992.

21


